Reg. No.			

Question Paper Code: 21197

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.

Seventh Semester

Electronics and Communication Engineering

EC 1402 A - MICROWAVE ENGINEERING

(Regulation 2008)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Define a reciprocal network.
- 2. The impedance matrix of a certain microwave circuit is $\begin{bmatrix} Z \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$. Determine the corresponding scattering matrix.
- 3. Using the scattering matrix of an E or H plane tee, outline its basic properties.
- 4. What is Faraday Rotation? How does it originate and what are its uses in various device?
- 5. A reflex Klystron is operating at 10 GHt with 600 V beam voltage. If the repeller voltage is 250 V, determine the optimum repelles space for 1³/₄ mode.
- 6. Define velocity modulation.
- 7. State the basic differences between a low frequency transistor and a microwave transistor.
- 8. Define transit time.
- 9. A generator feeds a rectangular wave guide (0.9 cm \times 0.4 cm) operating in the TE_{10} mode. When terminated in a short circuit the two successive minima are found to be separated by 2.4 cm, find the operating frequency.
- 10. Define Q factor of a cavity.

PART B - (5 × 16 = 80 marks)

Obtain 'S' matrix of a two port network with mismatched load. 11. (a) (i) (ii) Compare [S], [Z] and [Y] matrices. Obtain the relationship between Y - Z and ABCD parameters with S parameters. (10)Or (b) The scattering matrix of a two - port microwave network is given below: Find out: (i) If the network is lossless. (4) (ii) If the network is reciprocal. (4) (iii) The return loss if port z is terminated in a matched load; and (4) (iv) The return loss if port z is terminated in a short circuit. (4) 12. Elaborate on the following with necessary derivations and sketches: (a) (i) Short circuit plunger. (5).(ii) Directional couplers. (6)(iii) Tuning screws. (5)

Or

- (b) A lossless T junction power divider has a source impedance of 50Ω Find the output characteristic impedance so that the input power is divided in a ratio 2:1. Compute the reflection Co-efficient seen looking into the output ports.
- 13. (a) Compare the performance characteristics and applications of the following devices:
 - (i) Klystron amplifier.
 - (ii) TWT amplifier.
 - (iii) Magnetron
 - (iv) Klystron oscillator.

Or

(b) A 250 kW pulsed cylindrical magnetron is operated with the following parameters: Anode voltage = 25 kV; peak anode current = 25 A; magnetic induction = 0.035 T; radius of cathode = 4.0 cm and radius of the anode = 8.0 cm. Calculate: (i) the efficiency of magnetron (ii) the cyclotron frequency (iii) the cut off magnetic field and (iv) the cut-off voltage.

2

14.	(a)	Discuss the mounting of IMPATT device in:				
		(i)	Co – axial and	(8)		
. 6		(ii)	Wave guide configuration.	(8)		
			Or			
	(b)	(i)	What do you understand by transferred electron effect? Explain.	(6)		
		(ii)	Calculate the frequency of oscillations for a stable domain mode a $5\mu m$ long GaAs gunn device. What is the minimum elect concentration?	**		
15.	(a)	(i)	How are microwave measurements different from the low freque measurements?	ņсу (6)		
		(ii)	Explain with the help of a neat diagram the various methods u for low and medium power measurements.	sed (10)		
			\mathbf{Or}			
	(b)	Enu	merate the following:			
		(i)	Impedance measurement	(5)		
		(ii)	Frequency measurement	(5)		
		(iii)	Measurement of cavity Q.	(6)		